全過程學業預警跟蹤評價系統的研究與實現
電子技術應用
李啟鵬1,曾松偉2
1.浙江農林大學 數學與計算機科學學院;2.浙江農林大學 光機電工程學院
摘要: 傳統的學業預警系統通常更多關注學生的成績、考勤等終結性指標,并在這些指標達到特定條件時觸發預警。所研究的學業預警系統采用了全過程化監測預警方法,不僅對學生的期末成績、年度考核、出勤等常規指標進行監測,還對學生的課堂表現、課后作業、團隊考核、思想政治考核、經濟壓力等進行全面跟蹤、分析與評價。同時根據本科生導師制實施細則,發動各導師積極參與到學業預警活動中,作為學生學習過程中的重要指導者,跟蹤和評估學生的學業表現,并提供及時、有效、精準的學業指導,實現了從發出預警到指導效果的全程、閉環監控。采用粒子群算法(PSO)優化支持向量機(SVM),并結合Web與小程序技術,實現了全過程學業預警跟蹤評價系統,有效提升了預警的精準度和時效性,填補了傳統學業預警系統的不足。該系統對于提高學生學業質量具有重要意義,同時也為其他高校的學業預警幫扶系統提供參考。
中圖分類號:G456;TP311.1;TP399 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.245298
中文引用格式: 李啟鵬,曾松偉. 全過程學業預警跟蹤評價系統的研究與實現[J]. 電子技術應用,2025,51(2):86-92.
英文引用格式: Li Qipeng,Zeng Songwei. Research and implementation of a full-process academic early warning and tracking evaluation system[J]. Application of Electronic Technique,2025,51(2):86-92.
中文引用格式: 李啟鵬,曾松偉. 全過程學業預警跟蹤評價系統的研究與實現[J]. 電子技術應用,2025,51(2):86-92.
英文引用格式: Li Qipeng,Zeng Songwei. Research and implementation of a full-process academic early warning and tracking evaluation system[J]. Application of Electronic Technique,2025,51(2):86-92.
Research and implementation of a full-process academic early warning and tracking evaluation system
Li Qipeng1,Zeng Songwei2
1.College of Mathematics and Computer Science, Zhejiang A&F University; 2.College of Optical, Mechanical and Electrical Engineering
Abstract: Traditional academic warning systems usually focus more on terminal indicators such as students’ grades and attendance, and trigger warnings when these indicators meet specific conditions. The academic warning system studied in this paper adopts a whole-process monitoring and warning method, which not only monitors conventional indicators such as students’ final grades, annual assessments, and attendance, but also comprehensively tracks, analyzes and evaluates students’ classroom performance, homework after class, team assessments, ideological and political assessments, and economic pressure, etc. Meanwhile, based on the implementation rules of the undergraduate tutor system, all tutors are encouraged to actively participate in academic warning activities. As important mentors in the learning process of students, they track and evaluate students’ academic performance, and provide timely, effective, and precise academic guidance, realizing the whole-process and closed-loop monitoring from issuing warnings to guiding effects. This paper uses Particle Swarm Optimization (PSO) to optimize Support Vector Machine (SVM), and combines Web and mini-program technology to implement a whole-process academic warning tracking and evaluation system, which effectively improves the accuracy and timeliness of warnings, filling in the gaps of traditional academic warning systems. This system is of great significance for improving the quality of students’ academic performance, and also provides a reference for academic warning support systems in other universities.
Key words : academic early warning;dual mentorship;whole process;mutual assistance and mutual supervision;multidimensional data-drive
引言
隨著中國高等教育規模的不斷擴大,高等教育已經從精英化教育轉向普及化教育,如何保證學生的高質量培養已成為高校教育管理亟待解決的問題[1]。在此背景下,學業全過程預警機制應運而生,成為高校提高教學質量的有效措施[2-3]。
學業預警機制是指通過對學生學習狀態和成績情況進行監測和評估,及時發現并干預存在學業風險的學生,從而最大限度地提高學生培養質量的一種管理方法。該機制不僅關注學生個性化需求,同時也涉及教學體系、教師隊伍的建設和優化等方面。
建立學業過程預警機制不僅可以幫助學校提高教學效果,還可以“讓學生忙起來、讓教學活起來、讓管理嚴起來”。及時發現存在學業風險的學生并采取適當的干預措施幫助他們調整學習狀態、提高學習效率是至關重要的;另外,學校還應加強與學生的互動和溝通,以更好地了解他們的真實需求和反饋。通過這種方式,可以激發學生的學習熱情和創新能力,促使他們更積極地投入到學習當中。此外,建立學業預警機制還可以促進高校管理的嚴格化、規范化和信息化,實現數字賦能,為高校教育管理提供有力保障,為推動我國教育事業的發展做出積極貢獻。
本文詳細內容請下載:
http://www.llyysp.com/resource/share/2000006331
作者信息:
李啟鵬1,曾松偉2
(1.浙江農林大學 數學與計算機科學學院,浙江 杭州 311300;
2.浙江農林大學 光機電工程學院,浙江 杭州 311300)
此內容為AET網站原創,未經授權禁止轉載。